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Abstract—This paper presents the development of a practical
fault detection approach in photovoltaic (PV) systems, intended
for online implementation. The approach was developed and val-
idated using field measurements from a Canadian PV system. It
has a fairly low degree of complexity, but achieves a high fault
detection rate and is able to successfully cope with abnormali-
ties present in real-life measurements. The fault detection is based
on the comparison between the measured and model prediction
results of the ac power production. The model estimates the ac
power production using solar irradiance and PV panel tempera-
ture measurements. Prior to model development, a data analysis
procedure was used to identify values not representative of a nor-
mal PV system operation. The original 10-min measurements were
averaged over 1 h, and both datasets were used for modeling. In
order to better represent the PV system performance at differ-
ent sunlight levels, models for different irradiance ranges were
developed. The results reveal that the models based on hourly
averages are more accurate than the models using 10-min mea-
surements, and the models for different irradiance intervals lead
to a fault detection rate greater than 90%. The PV system perfor-
mance ratio (PR) was used to keep track of the system’s long-term
performance.

Index Terms—Data analysis, fault detection, lagging, normal
operation, online implementation, performance ratio (PR), predic-
tive model, photovoltaic (PV) systems.

I. INTRODUCTION

HE photovoltaic (PV) market and technology have shown

a rapid growth over the past years, representing today
a mature technology for power production from renewable
energy sources and a common on-site electricity generation
strategy. In Canada only, the installed capacity for solar PV
power grew at an annual rate of almost 150% annually over
the 2008-2011 period, reaching 495 MW in 2011 [1]. However,
the number of monitored PV systems has not followed the same
growing trend, as many PV plants, especially smaller ones, are
operated without a proper supervision system [2]. A fault detec-
tion algorithm for PV systems can provide an accurate estimate
of the electricity production under normal operating conditions
and detect PV system faults—periods of abnormally low power
production, when the system produces significantly less power
than it should at the given operating conditions. This would
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enable operators to take timely corrective actions, in order to
prevent the PV system to under-perform for prolonged periods
of time, minimize the power losses caused by these faults, and
improve the PV system performance. Different factors can be
responsible for the production losses of a PV system, such as
maximum power point tracking error [3], electrical disconnec-
tion [4], wiring losses and ageing [5], shading effects [6], dust
or snow accumulation on the surface of the solar panels [7], and
faulty power conditioning equipment such as dc—ac converters.

Some of the PV fault detection algorithms reported in the
literature are based on electrical-circuit simulations of a PV
panel [8]-[10], and some use statistical analysis of different PV
system measurements, as well as system efficiency values [11]-
[13]. Electrical signal analysis methods, such as time-domain
reflectometry, were also used to detect faulty PV strings [14].
Some of these approaches are developed using field data, while
a few use meteorological and satellite data [15].

A number of fault detection algorithms are based on the com-
parison between measured and modeled PV system outputs to
identify faults [2], [16]-[18]. Different methods are used to
develop predictive models for PV system power production. In
some approaches, the electricity production was predicted with
parametric models that use PV system and weather variables
along with adjustable parameters [19], [20]; other approaches
use artificial intelligence techniques, such as neural networks,
fuzzy logic, and expert systems [21]-[23]; PV system modeling
using commercial simulation packages was also reported [24].

In this work, we present the development of a fault detec-
tion procedure that is intended for online implementation. As
such, the main objective was the development of a practical
and fairly simple (low-complexity) approach that has a high
fault detection rate and is robust enough to successfully cope
with abnormal values inherently present in real-life data, such
as erroneous measurements and lagging between measurements
with different sampling rates. The fault detection approach is
based on the comparison between the measured and model
prediction results of the ac power production: a significant dif-
ference between those two values was considered a fault. The
predictive model used in this approach was selected such that its
development does not require knowledge of advanced modeling
methods, artificial intelligence techniques, detailed comprehen-
sion of the PV process and electrical circuits necessary to carry
out a circuit-based simulation, or familiarity with commer-
cial energy simulation software packages. The model used to
predict the PV system electricity production consists of one
equation and was selected not only based on its accuracy but
also on its low complexity. Prior to model development, a sim-
ple but effective data analysis procedure was used to process the
measurements, in order to minimize the effect of lagging and
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identify measurements not representative of a normal (fault-
free) PV system operation. To enable the generalization of this,
the fault detection algorithm to other PV systems, the predictive
model development and the calculation of the normal operation
limits can be automated.

This approach was developed and validated using histori-
cal measurements from a 120-kW PV plant located in Toronto,
Canada. The fault detection algorithm was validated with data
that include measurements taken during an actual faulty oper-
ation of the PV system-a period of time when the inverter
was malfunctioning. The model consists of one equation that
uses solar irradiance and PV panel temperature measurements
to predict the ac power production. In order to determine if
this simple model is sufficiently accurate, its predictive perfor-
mance was compared to that of a neural network model. Two
approaches were tested for developing the models: an approach
involving separate models for different irradiance ranges, in
order to better represent the PV system performance at differ-
ent sunlight levels, and a global approach over all irradiance
values. The measurement sampling rate was 10 min; these mea-
surements were also averaged over 1 h, to determine if this
will lead to an improved model accuracy and fault detection
rate. The performance ratio (PR) was used to complement the
model-based fault detection approach, by keeping track of the
long-term performance of the PV system.

Based on the results, recommendations for online implemen-
tation were formulated.

II. DATA ANALYSIS

The ac power production model should represent the
expected output of the PV system under normal operation con-
ditions; therefore, prior to model development, the data should
be analyzed to identify and remove from the modeling dataset
the measurements representative of a faulty PV system oper-
ation. The presence of faulty data can be caused by different
factors, such as instrument or equipment malfunction. Lags can
also be present in the dataset, due to improper synchronization
between sampling times of different measurements.

A. Data Collection

Historical data were collected from a PV system located
in Toronto, Canada. The system is mounted on the roof of
an institutional building, and it has a dc nominal capacity of
120 kW, generated by 400 Heliene 300W 72-cell panels con-
nected to a KACO XP100 inverter with a rated power output of
100-kW ac. Measurements recorded every 10 min, covering the
period of March 15-July 31, 2014, of the solar irradiance in the
PV array plane, panel temperature, and ac power output were
used to develop the fault detection approach. The irradiance
value is obtained by averaging 120 measurements taken every
5 s, and the panel temperature value is obtained by taking one
instantaneous measurement every 10 min. The ac power value
is obtained using the lifetime energy measurement generated
by the inverter—the total energy produced by the PV system
since its installation—by calculating the difference between the
energy produced after two consecutive 10-min time intervals.
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TABLE 1
BASIC STATISTICS FOR THE 10-MIN MEASUREMENTS DATASET

Operation Min. Max. Number
Measurement

mode value value obs.
AC power (kW) 0.6 107.4

Normal Irradiance (W/m?) 50.0 1311.0 8 842
Module temp. (°C) -14.6 50.6
AC power (kW) 0.6 105.6

Faulty Irradiance (W/m?) 53.0 1491.0 776
Module temp. (°C) -13.2 46.3

B. Data Averaging

The 10-min measurements were averaged over 1 h, in order
to determine if the hourly average data would reduce the mea-
surement variability and ultimately lead to a model accuracy
increase. The same analysis and model development approach
was applied to both 10-min and hourly averages datasets.

C. Data Analysis

The first step of data analysis was the elimination of obser-
vations corresponding to very low sunlight levels—Iess than
50 W /m2—for which the measurement accuracy is signif-
icantly reduced; observations corresponding to zero power
output were also removed.

Under normal conditions, the solar irradiance and power pro-
duction measurements follow a strong linear relationship. In
order to detect observations not representative of a normal PV
system operation, the plot of the ac power as a function of the
irradiance was examined. The coefficient of determination R2,
indicating the strength of the linear relationship between the
irradiance and power, was calculated-an R? value of 1 would
indicate that the data perfectly fit a straight regression line. The
R? values for the 10-min data and hourly averages were 0.78
and 0.91, respectively.

Observations close to the irradiance—power linear relation-
ship line are considered as normal operation measurements,
while observations far from this line are considered as faulty
operation data. The faulty data correspond to abnormal power
production, when the system produces significantly less or
more power than it should at the given irradiance level. The nor-
mal and faulty operation observations were identified through
visual inspection. A mathematical approach that can be auto-
mated is currently under development; however, for developing
and validating the approach, the visual inspection was deemed
sufficient.

The irradiance—power linear relationship is greatly improved
when the faulty data are removed: the R? coefficient increases
from 0.78 to 0.93 and from 0.9 to 0.97 for the 10-min data and
hourly averages, respectively. Basic statistics of the 10-min and
hourly averages datasets, for both normal and faulty operation,
are shown in Tables I and II, respectively. The normal and
faulty operation data for the 10-min measurements and hourly
averages are shown in Figs. 1 and 2, respectively—the R? val-
ues indicated on the plots correspond to the normal operation
data only.

For the 10-min measurements, the faulty points located
above the irradiance—power straight line occur mostly at
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TABLE 11
BASIC STATISTICS FOR THE HOURLY AVERAGES DATASET

Operation Min. Max. Number
Measurement
mode value value obs.
AC power (kW) 2.1 102.8
Normal Irradiance (W/m?) 50.0 1120.7 1587
Module temp. (°C) -12.9 49.8
AC power (kW) 0.4 84.9
Faulty Irradiance (W/m?) 52.7 1181.0 53
Module temp. (°C) -12.7 38.4
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Fig. 1. Power and irradiance values for the 10-min measurements.
Power vs. solar irradiance—hourly averages
120 4
u Normal operation data
R2=0.97
100 o Faulty data
S 80 ° o
x [ ]
= L
[ ]
g 60 -
o
Q.
Q 404 o
<
20 4
[ ]
0 ® ... .“o..olﬁ. oe® .
0 400 800 1200

Solar irradiance (W/m?)

Fig. 2. Power and irradiance values for the hourly averages.

irradiance values under 700 W/m?. Most of them correspond
to abnormally high power production at relatively low sun-
light levels, e.g., a power production of 95 kW at an irradiance
of 215 W/ m?. These values are evidently erroneous; their num-
ber is reduced when the 10-min measurements are averaged
hourly, suggesting that they may be caused by lagging between
the irradiance and power measurements. If this lagging does
not last for a long period, its effect is reduced when averaging
6 consecutive 10-min measurements into one hourly value.
The faulty points located below the line occur at almost all
irradiance levels, and most of them are still present when the
10-min measurements are hourly averaged. This suggests that

they represent actual PV system faults, when the power produc-
tion is abnormally low despite relatively high sunlight levels.
An inverter problem did affect the PV system output during the
month of April, causing most of the points corresponding to
power production levels below 10 kW despite high irradiance
levels.

The lagging between the irradiance and power values might
be caused by the manner in which the ac power measurement is
obtained every 10 min from the inverter, as the actual measure-
ment time and the time that the inverter generates the lifetime
energy value might not be perfectly synchronized. Also, the
measurements are not taken at the same moment and they might
be sent to the cloud server storing the data at different times,
where they are recorded with the same timestamp; this would
falsely indicate that they were obtained simultaneously.

The data analysis also revealed that the resolution of the ac
power measurements is 600 W; this relatively high data gran-
ularity might represent a modeling challenge, as for different
irradiance values, the same power output is measured-since the
power is measured in increments of 600 W.

III. MODEL DEVELOPMENT
A. AC Power Model

Models predicting the ac power production of the PV system
using solar irradiance and PV panel temperature measurements
were developed using both the 10-min and hourly averaged
data. The model is based on a parametric approach to model the
PV system efficiency. It was used to develop an automated fail-
ure detection routine [19]; modified versions of this model also
used the develop PV system output forecasts [25]. In the study
presented in this paper, a variation in this model was used, as
the power production is calculated as follows:

Pac = G (a1 + asG + azlog (G)) (14 as (T —25)) (1)

where P, is the ac power production (W), G is solar irradiance
in the PV module plane (W /m?), T},, is the module temperature
(°C) and a1, as, ag, and a4 are coefficients calculated, so that
the model result is as close as possible to the measured data.

B. Training and Validation Errors

Prior to computing the predictive models, the data are sep-
arated into training and validation sets. The training dataset is
used for developing the model, while the validation dataset is
used to validate the model performance. If only the training data
are used to determine the prediction performance, the accuracy
can be overestimated, since the model is specifically tuned to fit
the training data. This is called model over-fitting, and it occurs
when a model performs very well on the training dataset but is
not able to generalize from the data trend and performs poorly
on unseen data-the validation data. The validation dataset is
obtained by setting aside a portion of the original dataset that
will not be used during the training process. After the model
is fitted on the training data, its performance is tested on the
validation data.
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From the available data, 30% of observations are randomly
selected, in a uniformly distributed manner, as validation data.
The remaining 70% of observations represent the training
dataset and are used to develop the model.

The models were scored in terms of the validation error,
using the Coefficient of Variation of the Root Mean Square
Error-CV(RMSE); it is calculated as the square root of the aver-
age of the squares of the error for each validation observation,
normalized to the mean of the measured ac power values from
the validation dataset.

C. Normal Operation AC Power Models

Both the 10-min measurements and hourly averages identi-
fied previously as being representative of a normal PV system
operation were used to develop the models of the ac power
production.

Due to the technological quality of the solar modules, the
efficiency of a PV system is dependent on the light intensity
levels. At low irradiance levels-generally below 300 W /m?-the
efficiency is low; the efficiency increases with the sunlight lev-
els, and remains relatively stable until the irradiance reaches
higher values-generally over 900 W /m?2-when the efficiency
slightly drops [26], [27]. In order to capture the behavior of the
PV system according to sunlight levels, models for different
irradiance intervals were developed. This would determine if
multiple models corresponding to different sunlight levels lead
to a better accuracy than a single global model that covers the
whole irradiance range. For both the 10-min and hourly aver-
aged datasets, models for the following solar irradiance inter-
vals were developed: complete irradiance range measurements
(50—1311 W /m? for the 10-min data and 50—1120.7 W /m?
for the hourly averaged data); intervals of 100 W/ m?; inter-
vals of 200 W/m2; and intervals of 50-250, 250-500, and
500-max. irradiance.

For all irradiance intervals, the models developed using
hourly averages outperform the models developed with 10-min
measurements, especially at lower irradiance levels. For the
global model, covering the complete irradiance range, the error
of the model using the hourly averaged data is 33.9% lower than
that of the model using the 10-min data-errors of 10.15% and
15.34%, respectively.

The models developed using 100 W/m? and 200 W /m?
irradiance intervals do not significantly outperform the mod-
els developed using the intervals of 50-250, 250-500, and
500-max. irradiance; therefore, it was decided that only the
global model that covers the complete irradiance range, and the
models corresponding to 50-250, 250-500, and 500-max. irra-
diance will be used for fault detection. The model errors are
shown in Table III.

D. Model Performance Benchmark

The one-equation model presented in this section was
selected for predicting the ac power production mainly because,
in terms of online deployment, its implementation would be
less effort-intensive than programming a more complex model.
However, in order to determine if this one-equation model

IEEE TRANSACTIONS ON SUSTAINABLE ENERGY

TABLE III
VALIDATION ERRORS—CV(RMSE)

; ; 2 10-min. Hourly
frradiance interval (W/m’) measurements (%) averages (%)
Complete range—global model 15.34 10.15
50-250 35.87 17.63
250-500 21.47 12.06
500—-max. irradiance 9.48 7.25

TABLE IV

VALIDATION ERRORS OF THE ONE-EQUATION AND ANN MODELS

. . Validation errors Hidden layer
Irradiance interval :
(W/m?) One-eq. Neural Slze

model (%) network (%)  (neurons)
Complete range 10.15 9.17 27
50-250 17.63 16.66 29
250-500 12.06 11.59 9
500-max. irradiance 7.25 6.81 19

reaches sufficient accuracy levels, its predictive performance
was measured against the performance of a more complex
model.

Feedfoward neural network models were also developed.
Neural networks represent an artificial intelligence-based mod-
eling method that mimics the reasoning of the human brain;
they are known for their ability to model complex and highly
nonlinear processes. The feedforward configuration is widely
used for predictive applications. A description of this method
is outside the scope of this report; however, references are
abundant in published literature and on the internet.

The predictive accuracy of the neural network model was
used as a benchmark for evaluating the performance of the
one-equation model.

1) If its predictive performance is comparable to that of the

neural network model, its accuracy is deemed satisfactory.

2) If its predictive performance is significantly much poorer

than that of the neural network, a more complex model
should be considered to better represent the ac power
production.

The hourly averages of the solar irradiance and PV panel
temperature were used as inputs to the neural network models.
The number of neurons in the hidden layer was determined on
a trial and error basis: it was varied from 1 to 50 to determine
the size of the hidden layer leading to the smallest validation
error. The results revealed that setting the maximum number of
neurons at 50 was appropriate, as the evolution of the valida-
tion error indicates that model overfitting starts before the size
of the hidden layer reaches 50 neurons. The predictive errors of
both the one-equation and feedforward neural network mod-
els developed using hourly averages are shown in Table IV;
the number of neurons corresponding to each neural network
model is also indicated. It can be seen that although the neural
networks are slightly better, the improvement in accuracy is not
significant; therefore, it is considered that the accuracy of the
one-equation model is satisfactory.
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IV. FAULT DETECTION
A. Approach

The ac power models developed using hourly averaged data
were more accurate than those using the 10-min measurements.
The fault detection is therefore carried out using the hourly
average models based on the fault-free operation data described
previously. The normal operation limits are calculated using the
historical ac power measurements used for model development
and their corresponding model prediction results. In an online
implementation, the real-time irradiance and panel temperature
measurements are used as inputs to the model to calculate a
power output; the measured ac power is compared to this cal-
culated value to determine if it lies inside or outside the normal
operation limits. Points outside the normal operation limits are
considered faults.

The points located far from the irradiance—power straight
line, previously identified as representative of a faulty oper-
ation, were used to validate this approach: the measured ac
power values are compared to their corresponding model results
to determine if they are outside the normal operation limits.

B. Normal Operation Limits

The normal operation limits were calculated using the ratio
between the measured and modeled ac power for the nor-
mal operation data used to develop the model. The limits are
calculated as

Lower limit = u — 30 2)
Upper limit = u + 30 3)

where 1 and o are the average and standard deviation, respec-
tively, of the values of the ratio measured ac power/modeled
ac power over the training dataset. This ratio is used to deter-
mine how close the measurements are to their expected values,
according to the model: the closer this ratio is to 1, the closer
the measured power is to the modeled value.

The plus and minus 3 standard deviations (+30) interval was
chosen to calculate the normal operation limits. If the data are
normally distributed, about 99.7% of the points will lie within
430, and it is considered that values outside this interval do not
follow the statistical distribution of the bulk of the data. Even if
the data are not normally distributed, when using three standard
deviations, at least 88.9% of the observations fall in the 3¢
interval.

Normal operation limits were calculated for the global
model, covering the complete irradiance range, and for
the models corresponding to 50—250,250—500, and 500—
1120.7 W /m? intervals; their values are shown in Table V.

C. Fault Detection

The irradiance and PV panel temperature measurements cor-
responding to faulty data were used as inputs to the model,
and the ratio between the modeled and measured power was
calculated. The values of this ratio were then compared to
the normal operation limits to determine if faults are detected.
There were 53 faulty points; the global model successfully

TABLE V
NORMAL OPERATION LIMITS

Irradiance interval (W/m?) Lower limit Upper limit
Complete range—global model 0.5716 1.4132
50-250 0.4351 1.5616
250-500 0.6234 1.3656
500-max. irradiance 0.7644 1.2327

Faulty data and normal operation limits—global

model
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Fig. 3. Faults not detected by the global model.

Faulty data and normal operation limits—models for
different irradiance intervals
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Fig. 4. Faults detected by the models for different irradiances.

identified 43 faults, while the models for the solar irradiance
intervals of 50—250, 250—500, and 500—1120.7 W /m? suc-
cessfully identified 51 faults. The fault detection rates were
81.13% and 96.23%, respectively; the fault detection rate
obtained using models developed for different solar irradiance
intervals is almost 16% superior to that of the global model
that covers the complete irradiance range. At higher irradi-
ances, those models have narrower normal operating limits,
and are more effective in detecting faults that are relatively
close to the normal operating limits. This is shown in Figs. 3
and 4, where a group of faults occurring at irradiance values
higher than 900 W/m? is outside the normal operation lim-
its corresponding to the models developed for different solar
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Measured AC power and normal operation limits
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Fig. 5. Normal operation limits expressed in kW (data source: www.gcc.
solarvu.net).
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Fig. 6. False positives detected by the global model.

irradiance intervals, and inside the limits calculated using the
global model. Therefore, these faults are detected by the mod-
els developed for different solar irradiance intervals, but they
are not detected by the global model.

For every ac power output measurement, the normal oper-
ation limits can also be expressed in terms of kW by tak-
ing their values expressed in terms of the ratio measured ac
power/modeled ac power, and multiplying them with the power
output calculated by the model. An example of the measured
ac powers and their corresponding limits calculated using the
global model and expressed in terms of kW is shown in Fig. 5.

D. False Positives

A false positive represents a false alarm, i.e., a fault
is detected when, in reality, the system is operating nor-
mally. There are 1585 normal operation points in the
dataset; the global model detected 17 false positives,
while the models for the irradiance intervals of 50—250,
250—500, and 500—1120.7 W /m? detected 12. The false pos-
itives detected by the global model are shown in Fig. 6.
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The occurrence of false positives cannot be completely elim-
inated, as the model is not 100% accurate. By considering that
multiple consecutive points outside the limits represent a fault,
the number of false positives can be reduced. This strategy
increases the robustness of the fault detection system, as brief
low power production periods will not be falsely considered as
faults. This will impact the fault detection rate as well; how-
ever, since a real PV system fault is likely to last for at least a
few hours, this should not have a significant negative impact on
the fault detection rate.

An analysis of the false positives from the normal operation
data revealed that no two consecutive hourly values are outside
the normal operation limits; however, this value might change
in time as more data become available.

V. LONG-TERM PV SYSTEM MONITORING USING THE PR

The PR evaluates the efficiency of the PV system by compar-
ing its real performance to the ideal performance at standard test
condition (STC) of 1000 W /m? solar irradiance and 25°C PV
module temperature. The ideal performance is represented by
the rated dc power output of the system, while the real perfor-
mance is calculated using the system’s output over a specified
period of time and the amount of sunlight received over the
same time period. The PR is calculated as follows:

PR

B total ac (kWh)

~ rated dc (kW) x total insolation (Wh/m2)/1000 W /m?
“

where  total ac = ac energy (kWh)  produced  over
the time interval for which the PR is calculated,
rated dc = dc power at STC (kW) and total insolation =
total solar energy received by the PV system over the interval
for which the PR is calculated (Wh/rnQ). The PR value is
calculated over a specific period of time, and it is used to track
the PV system performance over time. The closer the PR value
for a PV system approaches 1, the closer the system production
is to its ideal, rated power production.

Monthly PR values were calculated, and it was seen that the
PR value for the April is lower than those for the other months;
this is caused by an inverter malfunction that occurred in April.
By calculating weekly PRs for the month of April, we can fur-
ther identify the time period when the fault occurred: the second
week of April, which has a PR value almost 35% lower than
the average of the other 3 weeks. The PR values are shown in
Table VI.

The PR can be a useful tool for monitoring system per-
formance; it does not require a model, only measured data.
Although it can be used for fault detection, faults can only
be detected after the time period for which the PR value is
calculated; for example, in the case of monthly PR values, a
month will pass before detecting that there is a problem with
the PV system. The PR value can complement the model-based
method for detecting PV system faults, as the model detects
faults in real time, and the PR value keeps track of the PV
system performance, as it degrades over time.
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TABLE VI
PR VALUES

Time period Performance ratio (%)

March 15-31 82.91
April 74.44
May 80.36
June 79.31
July 79.61
April first week 84.69
April second week 53.89
April third week 79.52
April four week 81.51

VI. CONCLUSION: RECOMMENDATIONS FOR ONLINE
IMPLEMENTATION

This section contains the conclusion of the study presented in
this paper. The approach that will be used to implement online
the fault detection algorithm is based on this conclusion. The
future work required to generalize the algorithm to other PV
systems is also presented.

Hourly averages of the measurements should be used for an
online implementation, since the ac power models developed
using hourly averages are more accurate than the models devel-
oped using 10-min measurements. The models for irradiance
intervals of 50—250,250—500, and 500—1120.7 W /m? lead
to superior accuracy and fault detection rates than the global
model that covers the whole irradiance range. Consequently,
the models based on hourly averages and developed for the
three different irradiance intervals will be used for the online
implementation.

Developing a practical fault detection system that has a rela-
tively low degree of complexity, is able to deal with erroneous
measurements and abnormal values, and achieves a high level
of accuracy was the main requirement of this study. Despite
the low complexity of the ac power production model, the pre-
dictive accuracy is quite high—the model for irradiance values
above 500 W/ m? has a validation error of 7.25%; the fault
detection rate is better than 90%. The fault detection accuracy
and robustness to abnormal measurements of this approach will
be further validated once it is implemented online. The model
accuracy can be improved by lowering the 600-W measuring
resolution of the ac power production. Using a watt meter,
instead of the inverter, to measure the power output, and the
same sampling rate as for the solar irradiance, would probably
eliminate most of the lagging between the power and irradiance
measurements.

The predictive model and fault detection algorithm are site-
specific, meaning that they are based on historical measure-
ments of the PV system to be monitored. In order to enable
the generalization of the approach to other PV systems, future
work will include the automation of the data analysis procedure
that identifies, prior to developing the predictive model, erro-
neous values, and measurements related to faulty operation. For
example, limits for identifying observations not representative
of a normal PV system operation can be automatically deter-
mined by calculating the distance between each observation

and the irradiance—power straight line and iteratively elimi-
nating observations with a high distance until a satisfactory
linear relationship is achieved. Future work also includes the
development of fault diagnosis rules, once the model is imple-
mented online and its accuracy and robustness is validated.
The specific causes of the faults would be identified, provid-
ing operators with valuable information regarding the required
corrective actions.
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